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Abstract

Continuous and algorithmic forms of the fourth-order tangent operator corresponding to isotropic multiplicative

elasto-plasticity are derived by generalizing an approach originally developed for ®nite elasticity. The Lagrangian
description of large-strain elasto-plasticity leads to a generalized eigenvalue problem which facilitates certain tensor
representations with respect to a reciprocal set of left and right eigenvectors. The tangent operators take an

extremely simple form due to the resolution in the basis spanned by the right eigenvectors. Remarkably, these new
developments reveal that the algorithmic version of the tangent operator preserves the structure of the continuous
counterpart. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Our present contribution generalizes previously published derivatives of isotropic tensor functions due
to Bowen and Wang (1970) and Chadwick and Ogden (1971). Both works contain a very elegant
derivation of the fourth-order tangent operator which represents the gradient of the second Piola±
Kirchho� stress tensor with respect to the Green±Lagrangian strain tensor. The method described in
these references has been developed for large-strain isotropic elasticity and is essentially based on a
special eigenvalue problem which determines the principal stretches as well as an orthonormal set of
eigenvectors. The calculation of the eigenvectors is characteristic for this approach and leads to
extremely simple expressions for the tangent operator. A corresponding numerical implementation
within a ®nite element formulation is described in Reese and Wriggers (1995). An algorithmic version of
multiplicative elasto-plasticity is treated in Wriggers et al. (1996) where again, within a spatial setting, a
special eigenvalue problem appears.

The inherent simplicity of the aforementioned approach becomes evident when compared with an
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alternative derivation based on the ®rst representation theorem for isotropic tensor functions (see e.g.
Morman, 1986; Gurtin, 1981). The alternative derivation is described in Simo and Taylor (1991) for the
case of ®nite elasticity, a more compact formulation can be found in Miehe (1993). A related ®nite
element implementation of the second approach can be found in Simo and Taylor (1991) for the case of
®nite elasticity, while an algorithmic version of large-strain elasto-plasticity is treated in Simo (1992),
again within a spatial setting.

Our goal is to derive the continuous as well as the algorithmic form of the fourth-order tangent
operator for a Lagrangian formulation of large-strain elasto-plasticity. As pointed out by
Ibrahimbegovic (1994) the material setting is appropriate for the description of large inelastic
deformations of space-curved membrane shells. Moreover, recently developed shell ®nite elements for
large-strain deformations rely on the assumed strain method which intrinsically is a material formulation
(Betsch and Stein, 1996; and the references therein). Accordingly, the algorithmic version of the tangent
operator in the material setting we aim for is especially useful for the implementation into assumed
strain elements, particularly shell ®nite elements.

The material version of large-strain multiplicative elasto-plasticity implies a generalized eigenvalue
problem (Ibrahimbegovic, 1994; Betsch and Stein, 1998). It turns out that the generalized eigenvalue
problem belongs to the class of symmetric-de®nite eigenproblems which makes possible certain tensor
representations with respect to a reciprocal set of left and right eigenvectors. These representations are
the cornerstone for the derivation of both the continuous and algorithmic versions of the continuous
fourth-order tangent operator. We show that the simplicity and elegance of the original approach due to
Bowen and Wang (1970) and Chadwick and Ogden (1971) can be entirely preserved in the more general
context considered here.

After a short summary of the underlying constitutive model of multiplicative elasto-plasticity
formulated within the Lagrangian setting, in Section 2.2 we rephrase the formulation by taking into
account the special structure of the generalized eigenvalue problem. In Section 2.3 we present the
derivation of the fourth-order tangent operator. Section 2.4 is devoted to the algorithmic counterpart of
the continuous description considered before. Finally, in Section 2.5 we consider the case of ®nite
elasticity which is contained as special case in the generalized setting at hand.

2. Derivation of the tangent operators

2.1. Outline of the problem

Within a material setting of large-strain isotropic elasto plasticity our goal is to derive the fourth-
order tangent operator L � 2@CS such that the rate equation ÇS � L : 1

2
ÇC holds. Here, C is the symmetric

second-order deformation tensor (right Cauchy±Green tensor), S is the symmetric second-order second
Piola±Kirchho� stress tensor and a superposed dot denotes the material time derivative. Following
Ibrahimbegovic (1994), the material version of multiplicative elasto-plasticity leads to the generalized
eigenvalue problemh

C ÿ l2AC p
i
NA � 0, �1�

where the symmetric second-order tensor C p takes into account inelastic deformations. Since C 2 R3�3 is
symmetric and C p 2 R3�3 is symmetric positive de®nite, the eigenvalue problem (1) belongs to the class
of symmetric-de®nite generalized eigenproblems. The set of generalized eigenvalues l2�C, C p� �
fl21, l22, l23g is given by l2�C, C p� � fl2j det �C ÿ l2C p� � 0g. Speaking in physical terms, l represents the
principal elastic stretch (see also Remark 2.1).
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Assuming the existence of a strain energy function given as symmetric function of the principal elastic
stretches, i.e. C � C�l1, l2, l3�, the second Piola±Kirchho� stress tensor can be calculated via

S � 2@C C : �2�
Under the restriction of isotropy we further consider a yield function F � F�t1, t2, t3�, given as
symmetric function of the principal Kirchho�-stresses tA � lA@lAF, �A � 1, 2, 3�. The evolution of
plastic deformation may now be written in the form (Ibrahimbegovic, 1994)

@ tC
pÿ1 � ÿ 2_gC ÿ1 @SFC pÿ1, �3�

which conforms with the principle of maximum plastic dissipation.

Remark 2.1. The considered isotropic theory of large-strain elasto-plasticity relies on a multiplicative
decomposition of the deformation gradient in the form

F � FeF p, �4�
where, Fe and F p represent the elastic and plastic part, respectively. We refer to Lubliner (1990) or
Maugin (1992) for further background material on multiplicative elasto-plasticity. The spatial counterpart
of the constitutive description in the reference con®guration summarized above involves the symmetric
eigenvalue problemh

begÿ l2AI
i
nA � 0 �5�

where g is the covariant metric tensor in the current con®guration and be � FeFeT is the elastic left
Cauchy±Green tensor. Similarly, in eqn (1) we have C p � F pTF p, the plastic right Cauchy±Green tensor.
Furthermore, in eqn (5), lA are the principal elastic stretches. Due to the special structure of the
eigenvalue problem, eqn (5), there is an orthonormal basis consisting of the eigenvectors nA. Both
eigenvalue problem, eqn (1) and (5), are connected by a similarity transformation which preserves the
eigenvalues. The transformation can be easily performed by taking into account the identities C � FTgF

and C pÿ1 � Fÿ1beFÿT, such that Fÿ1begF � C pÿ1C. Consequently, the similarity transformation leads to
the relation NA � Fÿ1nA.

We further remark that alternative equivalent versions of the ¯ow rule (3), formulated with respect to
di�erent con®gurations, have been derived e.g. by Miehe and Stein (1992), Simo (1992) and Hackl
(1997).

2.2. Formulation based on generalized eigenvalue problem

The key to our derivation of the material fourth-order tangent tensor is the resolution of the tensor
quantities based on the reciprocal set of left and right eigenvectors associated with the generalized
eigenvalue problem, eqn (1). First, let us introduce the reciprocal set of left and right eigenvectors
corresponding to the eigenvalue problem eqn (1), which may be written in the form�

C pÿ1C
�
NA � lll2ANA, �6�

such that NA are the right eigenvectors of �C pÿ1C� corresponding to the eigenvalues l2A. We further
introduce

NA � CNA, �7�
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where NA are the left eigenvectors of �C pÿ1C�, since eqn (1) implies the relation

NA �
�
C pÿ1C

�
� l2ANA: �8�

Scalar-multiplication of eqn (6) by NA yields NA � �C pÿ1C�NB � l2BNA �NB. Employing eqn (8), this
equation may be written in the formh

l2A ÿ l2B
i
NA �NB � 0: �9�

We further introduce the normalization

NA � C NA � 1, �10�
such that the orthogonality property

NA �NB � dBA �11�
holds, where dBA is the Kronecker delta. Note that the basis spanned by NA and NA is in general not
orthonormal or even orthogonal.

Next, we elaborate on special representations for C and C p which are essential for our further
developments. These representations are possible due to the fact that the eigenvalue problem under
consideration belongs to the class of so-called symmetric-de®nite generalized eigenvalue problems. We
refer to Golub and Van Loan (1996), section 8.7, or Ericksen (1960), section 37, for extensive
investigations of symmetric-de®nite generalized eigenvalue problems. Accordingly, in the present context,
the following representations are possible:

C �
X3
A�1

NA 
 NA and C p �
X3
A�1

1

l2A
NA 
 NA: �12�

Furthermore,

Cÿ1 �
X3
A�1

NA 
 NA and C pÿ1 �
X3
A�1

l2ANA 
 NA: �13�

In addition to that, the tensor C pÿ1C can be expressed uniquely in terms of its eigenvalues and a
reciprocal set of left and right eigenvectors. Accordingly, in the present case we obtain

C pÿ1C �
X3
A�1

l2ANA 
 NA: �14�

Note further, that the identity tensor may be written in the form

I �
X3
A�1

NA 
 NA: �15�

Remark 2.2. We emphasize again that the vectors NA as well as NA are in general not mutually orthogonal.
Therefore, eqn (12) should not be confused with the spectral decomposition of C and C p. These expressions
are merely component representations of C and C p with respect to the (skew) vectors NA. Accordingly, the
corresponding matrix representations of C and C p take the particularly simple diagonal forms
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�
Cij

� � diag �1, 1, 1� and
h
C

p
ij

i
� diag

�
lÿ21 , lÿ22 , lÿ23

�
�16�

in the basis consisting of vectors NA. These results are due to the fact that symmetric-de®nite pencils, like C ÿ
l2C p in the present case, can be simultaneously diagonalized.

Now we are in a position to derive preliminary results which will be needed for the derivation of the
tangent operators. The material time derivative of eqn (12)1 yields

ÇC �
X3
A�1

�
ÇNA 
 NA � NA 
 ÇNA

�
, �17�

which may also be written in the form ÇC � � ÇC �ijNi 
 Nj where � ÇC �AB � NA � ÇCN
B
are the components of

ÇC with respect to the basis fNAg, given by � ÇC �AB � NA � ÇNB � NB � ÇNA. Here and in the remainder, the
summation convention applies to repeated lower case letters, whereas repeated upper case letters are not
assumed summed unless indicated by a summation symbol.

Now, ÇC may also be represented by

� ÇC �AA� 2NA � ÇNA A � 1, 2, 3,

� ÇC �AB� NA � ÇNB � NB � ÇNA A 6� B: �18�
Similarly, we consider ÇC

p�� ÇC p�ijNi 
 Nj, such that time di�erentiation of eqn (12)2 leads to the
component representations

ÿ
ÇC

p
�AA � 2

l2A

"
NA � ÇNA ÿ

_lA

lA

#
A � 1, 2, 3,

ÿ
ÇC

p
�AB � 1

l2B
NA � ÇNB � 1

l2A
NB � ÇNA A 6� B: �19�

Proposition 2.1. With respect to the basis fNAg the second Piola±Kirchho� stress tensor (2) takes the form

S �
X3
A � 1

tANA 
 NA, �20�

with components tA � lA@lAC.

Proof. From eqn (2), by the chain rule we have

S � 2
X3
A�1

@lAC@ClA, �21�

where the term @ClA may be calculated by employing eqn (18)1, i.e. NA � ÇC N
A � 2NA � ÇNA, together with

eqn (19)1, i.e. NA � ÇC
p
NA � 2=l2A �NA � ÇNA ÿ _lA=lA�. Accordingly,

_lA � lA
2

NA � ÇCN
A ÿ l3A

2
NA � ÇC

p
NA, �22�

which implies

P. Betsch, P. Steinmann / International Journal of Solids and Structures 37 (2000) 1615±1628 1619



@ClA � lA
2

NA 
 NA: �23�

Proposition 2.2. The resolution of the ¯ow rule (3) with respect to the left eigenvectors fNAg takes the
form

ÇC
p � 2_g

X3
A�1

@ tAF

l2A
NA 
 NA: �24�

Proof. First, we show that

@StA � NA 
 NA: �25�

Material time di�erentiation of eqn (20) leads to NA � ÇSNA � _tA ÿ 2tANA � ÇNA. In view of eqn (18)1 we
have 2NA � ÇNA � NA � ÇCN

A
, such that

_tA � NA � ÇSNA � tANA � ÇCN
A
, �26�

which implies eqn (25). Now, the particular form, eqn (24), of the ¯ow rule can be obtained from eqn
(3) by using the identity ÇC p�ÿC p@ tC

pÿ1C p in combination with the spectral representations (13)
associated with the generalized eigenvalue problem.

Next, we compare the expression (19) for ÇC p, emanating from the generalized eigenvalue problem,
with the representation (24) of the continuous ¯ow rule. Accordingly, we obtain the following relations
which play an important role in our subsequent developments:

1

2
� ÇC �AA �

_lA

lA
� _g@ tAF A � 1, 2, 3,

l2ANA � ÇNB � l2BNB � ÇNA � 0 A 6� B:

�27�

2.3. Continuous elasto-plastic tangent operator

We aim at the derivation of the fourth-order tangent operator L � 2@CS corresponding to the material
formulation of large-strain elasto-plasticity described above. To this end we choose the representation

L � LijklN
i 
 N j 
 Nk 
 Nl, �28�

with components corresponding to the right eigenvectors NA of the generalized eigenvalue problem, eqn
(1).

Material time di�erentiation of the second Piola±Kirchho� stress tensor in the form of eqn (20) yields
the components

� ÇS �AA� _tA ÿ 2tANA � ÇNA A � 1, 2, 3,

� ÇS �AB � ÿ
�
tANA � ÇNB � tBNB � ÇNA

�
A 6� B, �29�

such that ÇS � � ÇS�ijNi 
 N j. Using eqn (27)2 in conjunction with eqn (18)1 and the continuous elasto-
plastic moduli D

ep
AB derived in Appendix A, we arrive at
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� ÇS �AA �
X3
B � 1

�
D

ep
AB ÿ 2tAdAB

�1
2
� ÇC �BB A � 1, 2, 3,

� ÇS �AB � 1

l2B

h
tBl

2
A ÿ tAl

2
B

i
NA � ÇNB A 6� B: �30�

Furthermore, making use of eqn (27)2, the components of ÇC given in the form of eqn (18) may now be
written as

� ÇC �AA � 2NA � ÇNA A � 1, 2, 3,

� ÇC �AB � 1

l2B

h
l2B ÿ l2A

i
NA � ÇNB A 6� B: �31�

Substituting from eqn (31)2 into eqn (30)2 leads to

� ÇS �AB � tBl
2
A ÿ tAl

2
B

l2B ÿ l2A

ÿ
ÇC
AB
�

A 6� B: �32�

Since ÇS � L : 1
2

ÇC and with regard to eqn (28), the component equation

� ÇS �AB �
X3
I�1

LABII
1

2
� ÇC �II�

X
I 6�J

LABIJ
1

2
� ÇC �IJ �33�

has to hold for arbitrary rates � ÇC �IJ 2 R6. Now, the components LABCD can be determined by inserting
eqns (30)1 and eqns (32) into eqn (33).

First, let us consider the case A � B in eqn (33). In view of eqn (30)1 and the arbitrariness of
� ÇC �AB 2 R6, we immediately obtain the result

LAAII � D
ep
AI ÿ 2tAdAI: �34�

In the case A 6� B, eqn (32) in conjunction with eqn (33) leads to

LABAB � tBl
2
A ÿ tAl

2
B

l2B ÿ l2A
A 6� B, �35�

where the minor symmetry of L, i.e. LABAB � LABBA, has been taken into account. All components not
speci®ed in eqns (34) and (35) vanish identically. To the authors' knowledge, the particular
representations (34) and (35) of the continuous tangent operator have not been derived in the literature
before. As will be shown in the next section, the algorithmic version of the tangent operator inherits
completely the simple structure of its continuous counterpart.

2.3.1. Coalescent eigenvalues
The foregoing derivation of the fourth-order tangent operator relies on the implicit assumption of
distinct eigenvalues. The case of multiple eigenvalues can be incorporated by means of a limiting process
in a similar way as was proposed by Bowen and Wang (1970) and Chadwick and Ogden (1971) for
elasticity. Accordingly, when lA and lB coincide, (35) needs to be replaced by
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LABAB � 1
2
�DBB ÿDAB � ÿ tA if lA � lB, A 6� B: �36�

Here, DAB are the components in eqn (A2).

2.4. Algorithmic elasto-plastic tangent operator

The algorithmic counterpart of the constitutive formulation described above is essentially based on
the integration of the ¯ow rule in conjunction with an operator split method, consisting of a `trial'
elastic predictor followed by a plastic corrector (Simo, 1992; and references therein). As has been shown
by Betsch and Stein (1998), within the material setting of multiplicative elasto-plasticity, one obtains the
generalized eigenvalue problemh

Cn�1 ÿ l2A�C
p
n

i
NA� � 0, �37�

corresponding to the trial elastic step. Here, C p
n is the plastic history ®eld belonging to the last load

step, whereas Cn�1 is the deformation tensor of a new con®guration calculated by means of an iterative
solution procedure, e.g. the Newton method.

According to our previous investigations, the symmetric-de®nite eigenproblem (37) gives rise to the
following representations:

Cn�1 �
X3
A�1

NA� 
 NA� and C p
n �

X3
A�1

1

l2A�
NA� 
 NA� : �38�

These expressions are analogous to eqn (12) and correspond to the symmetric-de®nite eigenproblem (37)
associated with the trial elastic step.

As has been originally proposed by Weber and Anand (1990), the integration of the ¯ow rule may be
performed by means of an implicit method by employing the exponential map. In the present case, the
¯ow rule (24) may be written in the form

ÇC
p � 2_g

X3
A�1

@ tAFNA 
 NAC p, �39�

such that the algorithmic version of the ¯ow rule follows as

C
p
n�1 � Xÿ1D C p

n : �40�

In eqn (40), the incremental integration operator is given by Xÿ1D � exp �SA2g@ tAFNA 
 NA�jn�1, such
that XD � SA exp �ÿ2g@TA

F�NA 
NAjn�1. The algorithmic ¯ow rule (40) may also be written in the form
XDC

p
n�1 � C p

n , so that using eqn (12) for C
p
n�1, and eqn (38) for C p

n , yields the integrated version of the
¯ow rule in the form

eAn�1 � eA� ÿ g@ t A
Fjn�1 A � 1, 2, 3, �41�

where, by de®nition eA � ln lA. Moreover, we obtain NAn�1 � NA� . Eqn (41) can be considered as the
algorithmic counterpart of the continuous ¯ow rule in the form of eqn (27)1.

In analogy with eqn (18), within the algorithmic formulation, we may express the components of the
linearized deformation tensor DCn�1 with respect to the basis fNAn�1g. For the sake of a compact
notation we will omit the subscript `n + 1' in the remainder of this section. From eqn (38)1 we calculate
the components
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�DC�AA � 2NA �DNA A � 1, 2, 3,

�DC�AB � NA � DNB � NB � DNA A 6� B: �42�
Since C p

n represents the converged plastic ®eld of the last increment, DC p
n � 0, such that eqn (38)2 leads

to the component equations

NA �DNA ÿ DlA�
lA�
� 0 A � 1, 2, 3,

l2A�N
A � DNB � l2B �N

B � DNA � 0 A 6� B:

�43�

Thus, the components of DC in eqn (42) can also be written as

�DC�AA � 2
DlA�
lA�
� 2DeA� A � 1, 2, 3,

�DC�AB � 1

l2B �

h
l2B � ÿ l2A�

i
NA � DNB A 6� B, �44�

which can be considered as the algorithmic counterpart of eqn (31). The linearization of the second
Piola±Kirchho� stress tensor can be performed along lines of the continuous case elaborated above.
Accordingly, we obtain the component expressions

�DS�AA �
X3
B�1

h
~D
ep

AB ÿ 2tAdAB
i
1

2
�DC�BB A � 1, 2, 3,

�DS�AB � tBl
2
A� ÿ tAl

2
B �

l2B � ÿ l2A�
�DCAB � A 6� B: �45�

which are the algorithmic versions of eqns (30)1 and eqn (32), respectively. In eqn (45), ~D
ep

AB now
represents the algorithmic elasto-plastic moduli derived in Appendix B. Eventually, as in the continuous
case, we obtain the algorithmic fourth-order tangent operator in the form ~L � ~LijklN

i 
 N j 
 Nk 
 Nl,
with components given by

~LAABB � ~D
ep

AB ÿ 2tAdAB A, B � 1, 2, 3,

~LABAB � tBl
2
A� ÿ tAl

2
B �

l2B � ÿ l2A�
A 6� B: �46�

such that DS � ~L : DC. All the components not speci®ed in eqn (46) vanish identically, i.e. there remain
only nine independent components ~LABCD.

It is worthwhile noting that the algorithmic tangent operator inherits the structure of the continuous
tangent operator which becomes evident by comparing eqn (46) with eqns (34) and (35), respectively.
Accordingly, similar to the in®nitesimal theory (Simo and Taylor, 1985), in the algorithmic setting the
continuous elasto-plastic moduli D

ep
AB simply have to be replaced by the algorithmic elasto-plastic moduli

~D
ep

AB. In addition to that, in eqn (46)2 the principal elastic stretch is associated with the trial elastic state.
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Obviously, in the case of an elastic deformation increment, that is for C p
n�1 � C p

n , the continuous
and algorithmic tangent operators coincide, since then lA � lA� , and D

ep
AB � ~D

ep
AB � DAB.

2.4.1. Outline of the numerical implementation
Following the above developments, we give a summary of the essential steps for the numerical
implementation of multiplicative elasto-plasticity in the reference con®guration. For simplicity we
consider the case of perfect plasticity.

According to Section 2.4, the only input variables needed by the constitutive procedure are the total
strains in form of Cn�1 (or equivalently the Green±Lagrangian strains) in conjunction with the plastic
history ®eld C pÿ1

n .

Step 1: Trial state. Compute the eigenvalues l2A� and the associated right eigenvectors NA
� of C pÿ1

n Cn�1
corresponding to the symmetric-de®nite generalized eigenvalue problem (37), i.e.h

Cn�1 ÿ l2A�C
p
n

i
NA
� � 0:

We refer to Golub and Van Loan (1996), section 8.7, for a description of e�cient procedures
for the solution of the underlying eigenvalue problem.

Step 2: Check if the load step is elastic or plastic. Compute the principal trial stress tA� � lA�@lAC�lA� �
and check the yield condition. If F�tA� �e0 perform standard return mapping algorithm in
principal stretches, based on eqn (41) see e.g. (Simo, 1992) to obtain lAn�1. Compute second
Piola±Kirchho� stress tensor, which according to eqn (20) is given by

Sn�1 �
X3
A�1

tAn�1NA
� 
 NA

� , with tAn�1 � lAn�1@lAC�lAn�1 �:

Step 3: Update the plastic history ®eld. According to eqn (13) the update of the plastic history ®eld can
be performed via

C
pÿ1
n�1 �

X3
A�1

l2An�1NA
� 
 NA

� :

Step 4: Algorithmic tangent operator. Following the detailed derivation in the above, the fourth-order
algorithmic elasto-plastic tangent tensor takes a particularly simple form when written as

~L � ~LijklN
i
� 
 N j

� 
 Nk
� 
 Nl

�,

with components ~Lijkl according to eqn (46). Note that only nine independent components ~Lijkl have to
be computed, which facilitates an e�cient numerical implementation.

Note that the deformation gradient does not need to be provided by the ®nite element formulation
which makes the considered constitutive procedure especially attractive for assumed strain elements.

2.5. Isotropic elasticity

Large-strain isotropic elasticity is contained as a special case in the more general setting considered
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above. In this section we brie¯y show that for elasticity our formulation degenerates to the formulas due
to Bowen and Wang (1970), Chadwick and Ogden (1971) and Ogden (1984).

In the case of elasticity, the generalized eigenvalue problem (1) reduces to the standard symmetric
form h

C ÿ l2AG
i
NA � 0, �47�

with C p being replaced by the metric tensor G in the reference con®guration. Accordingly, for distinct
eigenvalues, we obtain three mutually orthogonal eigenvectors, such that, for A 6� B, NA �NB � 0, as
well as NA �NB � 0. Next, we introduce an orthonormal set of eigenvectors de®ned by

nA � 1

lA
NA � lANA: �48�

Thus, the normalizing condition (10) yields nA � CnA � l2A, and the orthogonality property (11) now
takes the form

nA � nB � dAB: �49�

Furthermore, the representations of C and C p in eqn (12) now lead to the spectral decompositions

C �
X3
A�1

l2AnA 
 nA and G �
X3
A�1

nA 
 nA: �50�

Moreover, expression (20) for the second Piola±Kirchho� stress tensor may now be written in the form

S �
X3
A�1

SANA 
 nA, with SA � tA
l2A
� @lAC

lA
: �51�

Here, the components SA are the principal second Piola±Kirchho� stresses. The elastic tangent operator
corresponding to eqn (28) can now be written as

L � Lijklni 
 nj 
 nk 
 nl, �52�

where the components Lijkl follow from eqn (34) and (35) via

LABCD � LABCD

lAlBlClD
: �53�

Accordingly, for the case of elasticity, we obtain the familiar expressions

LAABB � @ eBSA A, B � 1, 2, 3,

LABAB � SB ÿ SA

2�eB ÿ eA � A 6� B: �54�

Here, eA � 1
2 �l2A ÿ 1� are the principal Green±Lagrangian strains. Eqn (54)1 follows from eqn (34) by

taking into account that @ eA �.� � lÿ1A @lA� .�, such that
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@ eBSA � DAB

l2Al
2
B

ÿ 2SA

l2A
dAB, �55�

where the components DAB are given by eqn (A2). The limiting case of multiple eigenvalues can be
treated with the help of eqn (36), which with regard to eqns (53) and (55) leads to

LABAB � 1
2@ eB �SB ÿ SA �, if eA � eB, A 6� B: �56�

3. Conclusions

We have derived the continuous and algorithmic form of the fourth-order tangent operator
corresponding to multiplicative elasto-plasticity formulated within a material setting. To this end we
extended an approach due to Bowen and Wang (1970) and Chadwick and Ogden (1971), originally
developed for the case of ®nite elasticity in principal axis. In the present more general framework of
large strain elasto-plasticity, we start from a generalized eigenvalue problem which belongs to the class
of symmetric-de®nite eigenproblems. Due to its special structure, the generalized eigenvalue problem
facilitates certain tensor representations in terms of a reciprocal set of left and right eigenvectors. These
representations replace the spectral decompositions of the original approach based on an orthonormal
set of eigenvectors.

It turns out that the conceptual simplicity and elegance of the original formulation carries over to the
more general context of multiplicative elasto-plasticity. Speci®cally, the resolution of the tangent
operator in the basis spanned by the right eigenvectors results in extremely simple component
expressions. As a further result it is shown that the algorithmic version of the tangent operator preserves
entirely the structure of the continuous form. For example, similar to the in®nitesimal theory of elasto-
plasticity (Simo and Taylor, 1985), the continuous elasto-plastic moduli formulated in principle axis are
replaced by their algorithmic counterpart consistent with the integration of the ¯ow rule also written in
principal axis. Naturally, our generalized formulation includes ®nite elasticity as a special case. In this
case the tangent operator reduces to the familiar form of the original formulation.

Even higher order derivatives such as the sixth-order tensor corresponding to the second gradient of S
with respect to C could be easily calculated by employing the newly developed generalization to elasto-
plasticity. This might be of interest for the investigation of stability problems (Reese and Wriggers,
1995) where the original approach restricted to elasticity has been used.
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Appendix A. Continuous elasto-plastic moduli Dep
AB

For simplicity we consider the case of perfect plasticity with arbitrary stored energy function C �
C�l1, l2, l3� and yield function F � F�t1, t2, t3�. Since tA � lA@lAC, time di�erentiation yields _tA �
@litA _l i. Employing the ¯ow rule in the form of eqn (27), i.e. _lB � lB� 12� ÇC

BB� ÿ _g@ tBF�, yields
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_tA �
X3
B�1

DAB

�
1

2
� ÇC �BBÿ_g@ tBF

�
, �A1�

with

DAB � tAdAB � lA@2lAlBClB: �A2�

Note that eqn (A2) may also be written in the form DAB � @2eAeBc, where the logarithmic stretches eA �
ln lA have been introduced. For plastic loading, the consistency condition _F � 0 leads to _F � @ tiF_t i �
@ tiFDij� 12� ÇC �ij ÿ _g@ tjF� � 0: Thus, the plastic parameter takes the form

_g � @ tiFDij� ÇC ��jj�
2@ tkFDkl@ tlF

: �A3�

Eventually, (A1) may be written in the form

_tA �
X3
B�1

D
ep
AB

1

2
� ÇC �BB, �A4�

where the continuous elasto-plastic moduli are given by

D
ep
AB � DAB ÿ

@ tiFDAi@ tjFDBj

@ tkFDkl@ tlF
: �A5�

Appendix B. Algorithmic elasto-plastic moduli ÄD
ep

AB

Similarly to the derivation of the continuous elasto-plastic moduli, the algorithmic elasto-plastic
moduli, consistent with the integrated version of the ¯ow rule, can be calculated. Using the algorithmic
¯ow rule in the form of eqn (41), i.e. eA � eA� ÿ g@ tA , F, in combination with tA � @ eA C yields

DtA �
X3
B�1

HAB

�
DeB � ÿ Dg@ tBF

�
, �B1�

where the matrix H � �HAB� is de®ned by

Hÿ1 � Dÿ1 � g
h
@2tAtBF

i
, �B2�

where D � �DAB�, with components DAB in eqn (A2). The consistency condition implies DF � @ tiFDti �
0, from which the linearized plastic parameter follows in the form

Dg � @ tiFHijDej�
@ tkFHkl@ tlF

: �B3�

Substituting eqn (B3) into eqn (B1) leads to

DtA �
X3
B�1

~D
ep

ABDeB � , �B4�
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where the algorithmic elasto-plastic moduli are given by

~D
ep

AB � HAB ÿ
@ tiFHAi @ tjFHBj

@ tkFHkl@ tlF
: �B5�
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